1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
// Copyright © 2023 HQS Quantum Simulations GmbH. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
// express or implied. See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;

use roqoqo::{devices::QoqoDevice, RoqoqoError};

use ndarray::{array, Array2};

use crate::IBMDevice;

#[derive(Debug, PartialEq, Clone, serde::Serialize, serde::Deserialize)]
pub struct IBMJakartaDevice {
    /// The number of qubits
    number_qubits: usize,
    /// Gate times for all single qubit gates
    single_qubit_gates: HashMap<String, HashMap<usize, f64>>,
    /// Gate times for all two qubit gates
    two_qubit_gates: HashMap<String, TwoQubitGates>,
    /// Decoherence rates for all qubits
    decoherence_rates: HashMap<usize, Array2<f64>>,
}

type TwoQubitGates = HashMap<(usize, usize), f64>;

impl IBMJakartaDevice {
    /// Creates a new IBMJakartaDevice.
    ///
    /// # Returns
    ///
    /// An initiated IBMJakartaDevice with single and two-qubit gates and decoherence rates set to zero.
    ///
    #[deprecated(since = "0.2.0", note = "Device ibmq_jakarta has been retired.")]
    pub fn new() -> Self {
        let mut device = Self {
            number_qubits: 7,
            single_qubit_gates: HashMap::new(),
            two_qubit_gates: HashMap::new(),
            decoherence_rates: HashMap::new(),
        };

        for qubit in 0..device.number_qubits() {
            for gate in device.single_qubit_gate_names() {
                device
                    .set_single_qubit_gate_time(&gate, qubit, 1.0)
                    .unwrap();
            }
        }
        for edge in device.two_qubit_edges() {
            for gate in device.two_qubit_gate_names() {
                device
                    .set_two_qubit_gate_time(&gate, edge.0, edge.1, 1.0)
                    .unwrap();
                device
                    .set_two_qubit_gate_time(&gate, edge.1, edge.0, 1.0)
                    .unwrap();
            }
        }

        device
    }

    /// Returns the IBM's identifier.
    ///
    /// # Returns
    ///
    /// A str of the name IBM uses as identifier.
    pub fn name(&self) -> &'static str {
        "ibmq_jakarta"
    }
}

impl Default for IBMJakartaDevice {
    fn default() -> Self {
        Self::new()
    }
}

impl From<&IBMJakartaDevice> for IBMDevice {
    fn from(input: &IBMJakartaDevice) -> Self {
        Self::IBMJakartaDevice(input.clone())
    }
}

impl From<IBMJakartaDevice> for IBMDevice {
    fn from(input: IBMJakartaDevice) -> Self {
        Self::IBMJakartaDevice(input)
    }
}

impl IBMJakartaDevice {
    /// Setting the gate time of a single qubit gate.
    ///
    /// # Arguments
    ///
    /// * `gate` - hqslang name of the single-qubit-gate.
    /// * `qubit` - The qubit for which the gate time is set.
    /// * `gate_time` - gate time for the given gate.
    pub fn set_single_qubit_gate_time(
        &mut self,
        gate: &str,
        qubit: usize,
        gate_time: f64,
    ) -> Result<(), RoqoqoError> {
        if qubit >= self.number_qubits {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubit {} larger than number qubits {}",
                    qubit, self.number_qubits
                ),
            });
        }
        match self.single_qubit_gates.get_mut(gate) {
            Some(gate_times) => {
                let gatetime = gate_times.entry(qubit).or_insert(gate_time);
                *gatetime = gate_time;
            }
            None => {
                let mut new_map = HashMap::new();
                new_map.insert(qubit, gate_time);
                self.single_qubit_gates.insert(gate.to_string(), new_map);
            }
        }
        Ok(())
    }

    /// Setting the gate time of a two qubit gate.
    ///
    /// # Arguments
    ///
    /// * `gate` - hqslang name of the two-qubit-gate.
    /// * `control` - The control qubit for which the gate time is set.
    /// * `target` - The target qubit for which the gate time is set.
    /// * `gate_time` - gate time for the given gate.
    pub fn set_two_qubit_gate_time(
        &mut self,
        gate: &str,
        control: usize,
        target: usize,
        gate_time: f64,
    ) -> Result<(), RoqoqoError> {
        if control >= self.number_qubits {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubit {} larger than number qubits {}",
                    control, self.number_qubits
                ),
            });
        }
        if target >= self.number_qubits {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubit {} larger than number qubits {}",
                    target, self.number_qubits
                ),
            });
        }
        if !self
            .two_qubit_edges()
            .iter()
            .any(|&(a, b)| (a, b) == (control, target) || (a, b) == (target, control))
        {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubits {} and {} are not connected in the device",
                    control, target
                ),
            });
        }

        match self.two_qubit_gates.get_mut(gate) {
            Some(gate_times) => {
                let gatetime = gate_times.entry((control, target)).or_insert(gate_time);
                *gatetime = gate_time;
            }
            None => {
                let mut new_map = HashMap::new();
                new_map.insert((control, target), gate_time);
                self.two_qubit_gates.insert(gate.to_string(), new_map);
            }
        }
        Ok(())
    }

    /// Adds qubit damping to noise rates.
    ///
    /// # Arguments
    ///
    /// * `qubit` - The qubit for which the dampins is added.
    /// * `daming` - The damping rates.
    pub fn add_damping(&mut self, qubit: usize, damping: f64) -> Result<(), RoqoqoError> {
        if qubit > self.number_qubits {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubit {} out of range for device of size {}",
                    qubit, self.number_qubits
                ),
            });
        }
        let aa = self
            .decoherence_rates
            .entry(qubit)
            .or_insert_with(|| Array2::zeros((3, 3)));
        *aa = aa.clone() + array![[damping, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]];
        Ok(())
    }

    /// Adds qubit dephasing to noise rates.
    ///
    /// # Arguments
    ///
    /// * `qubit` - The qubit for which the dephasing is added.
    /// * `dephasing` - The dephasing rates.
    pub fn add_dephasing(&mut self, qubit: usize, dephasing: f64) -> Result<(), RoqoqoError> {
        if qubit > self.number_qubits {
            return Err(RoqoqoError::GenericError {
                msg: format!(
                    "Qubit {} out of range for device of size {}",
                    qubit, self.number_qubits
                ),
            });
        }
        let aa = self
            .decoherence_rates
            .entry(qubit)
            .or_insert_with(|| Array2::zeros((3, 3)));
        *aa = aa.clone() + array![[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, dephasing]];
        Ok(())
    }
}

/// Implements QoqoDevice trait for IBMJakartaDevice.
///
/// The QoqoDevice trait defines standard functions available for roqoqo devices.
///
impl QoqoDevice for IBMJakartaDevice {
    /// Returns the gate time of a single qubit operation if the single qubit operation is available on device.
    ///
    /// # Arguments
    ///
    /// * `hqslang` - The hqslang name of a single qubit gate.
    /// * `qubit` - The qubit the gate acts on.
    ///
    /// # Returns
    ///
    /// * `Some<f64>` - The gate time.
    /// * `None` - The gate is not available on the device.
    ///
    #[allow(unused_variables)]
    fn single_qubit_gate_time(&self, hqslang: &str, qubit: &usize) -> Option<f64> {
        match self.single_qubit_gates.get(hqslang) {
            Some(x) => x.get(qubit).copied(),
            None => None,
        }
    }

    /// Returns the names of a single qubit operations available on the device.
    ///
    /// # Returns
    ///
    /// * `Vec<String>` - The list of gate names.
    ///
    fn single_qubit_gate_names(&self) -> Vec<String> {
        vec![
            "PauliX".to_string(),
            "RotateZ".to_string(),
            "SqrtPauliX".to_string(),
            "Identity".to_string(),
        ]
    }

    /// Returns the gate time of a two qubit operation if the two qubit operation is available on device.
    ///
    /// # Arguments
    ///
    /// * `hqslang` - The hqslang name of a two qubit gate.
    /// * `control` - The control qubit the gate acts on.
    /// * `target` - The target qubit the gate acts on.
    ///
    /// # Returns
    ///
    /// * `Some<f64>` - The gate time.
    /// * `None` - The gate is not available on the device.
    ///
    #[allow(unused_variables)]
    fn two_qubit_gate_time(&self, hqslang: &str, control: &usize, target: &usize) -> Option<f64> {
        match self.two_qubit_gates.get(hqslang) {
            Some(x) => x.get(&(*control, *target)).copied(),
            None => None,
        }
    }

    /// Returns the names of a two qubit operations available on the device.
    ///
    /// # Returns
    ///
    /// * `Vec<String>` - The list of gate names.
    ///
    fn two_qubit_gate_names(&self) -> Vec<String> {
        vec!["CNOT".to_string()]
    }

    /// Returns the gate time of a three qubit operation if the three qubit operation is available on device.
    ///
    /// # Arguments
    ///
    /// * `hqslang` - The hqslang name of a two qubit gate.
    /// * `control_0` - The control_0 qubit the gate acts on.
    /// * `control_1` - The control_1 qubit the gate acts on.
    /// * `target` - The target qubit the gate acts on.
    ///
    /// # Returns
    ///
    /// * `Some<f64>` - The gate time.
    /// * `None` - The gate is not available on the device.
    ///
    #[allow(unused_variables)]
    fn three_qubit_gate_time(
        &self,
        hqslang: &str,
        control_0: &usize,
        control_1: &usize,
        target: &usize,
    ) -> Option<f64> {
        None
    }

    /// Returns the gate time of a multi qubit operation if the multi qubit operation is available on device.
    ///
    /// # Arguments
    ///
    /// * `hqslang` - The hqslang name of a multi qubit gate.
    /// * `qubits` - The qubits the gate acts on.
    ///
    /// # Returns
    ///
    /// * `Some<f64>` - The gate time.
    /// * `None` - The gate is not available on the device.
    ///
    #[allow(unused_variables)]
    fn multi_qubit_gate_time(&self, hqslang: &str, qubits: &[usize]) -> Option<f64> {
        None
    }

    /// Returns the names of a multi qubit operations available on the device.
    ///
    /// The list of names also includes the three qubit gate operations.
    ///
    /// # Returns
    ///
    /// * `Vec<String>` - The list of gate names.
    ///
    fn multi_qubit_gate_names(&self) -> Vec<String> {
        vec![]
    }

    /// Returns the matrix of the decoherence rates of the Lindblad equation.
    ///
    /// # Arguments
    ///
    /// * `qubit` - The qubit for which the rate matrix is returned.
    ///
    /// # Returns
    ///
    /// * `Some<Array2<f64>>` - The decoherence rates.
    /// * `None` - The qubit is not part of the device.
    ///
    #[allow(unused_variables)]
    fn qubit_decoherence_rates(&self, qubit: &usize) -> Option<Array2<f64>> {
        self.decoherence_rates.get(qubit).cloned()
    }

    /// Returns the number of qubits the device supports.
    ///
    /// # Returns
    ///
    /// `usize` - The number of qubits in the device.
    ///
    fn number_qubits(&self) -> usize {
        self.number_qubits
    }

    /// Return a list of longest linear chains through the device.
    ///
    /// Returns at least one chain of qubits with linear connectivity in the device,
    /// that has the maximum possible number of qubits with linear connectivity in the device.
    /// Can return more that one of the possible chains but is not guaranteed to return
    /// all possible chains. (For example for all-to-all connectivity only one chain will be returned).
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<usize>>` - A list of the longest chains given by vectors of qubits in the chain.
    ///
    fn longest_chains(&self) -> Vec<Vec<usize>> {
        vec![
            vec![0, 1, 3, 5, 6],
            vec![0, 1, 3, 5, 4],
            vec![2, 1, 3, 5, 4],
            vec![2, 1, 3, 5, 6],
        ]
    }

    /// Return a list of longest closed linear chains through the device.
    ///
    /// Returns at least one chain of qubits with linear connectivity in the device ,
    /// that has the maximum possible number of qubits with linear connectivity in the device.
    /// The chain must be closed, the first qubit needs to be connected to the last qubit.
    /// Can return more that one of the possible chains but is not guaranteed to return
    /// all possible chains. (For example for all-to-all connectivity only one chain will be returned).
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<usize>>` - A list of the longest chains given by vectors of qubits in the chain.
    ///
    fn longest_closed_chains(&self) -> Vec<Vec<usize>> {
        vec![
            vec![0, 1],
            vec![1, 0],
            vec![1, 2],
            vec![2, 1],
            vec![1, 3],
            vec![3, 1],
            vec![3, 5],
            vec![5, 3],
            vec![4, 5],
            vec![5, 4],
            vec![5, 6],
            vec![6, 5],
        ]
    }

    /// Returns the list of pairs of qubits linked with a native two-qubit-gate in the device.
    ///
    /// A pair of qubits is considered linked by a native two-qubit-gate if the device
    /// can implement a two-qubit-gate between the two qubits without decomposing it
    /// into a sequence of gates that involves a third qubit of the device.
    /// The two-qubit-gate also has to form a universal set together with the available
    /// single qubit gates.
    ///
    /// The returned vectors is a simple, graph-library independent, representation of
    /// the undirected connectivity graph of the device.
    /// It can be used to construct the connectivity graph in a graph library of the users
    /// choice from a list of edges and can be used for applications like routing in quantum algorithms.
    ///
    /// # Returns
    ///
    /// A list (Vec) of pairs of qubits linked with a native two-qubit-gate in the device.
    ///
    fn two_qubit_edges(&self) -> Vec<(usize, usize)> {
        vec![(0, 1), (1, 2), (1, 3), (3, 5), (4, 5), (5, 6)]
    }
}