Open Systems
Open systems represent a full system and environment. Mathematically, this means that a LindbladOpenSystem represents the entire Lindblad equation. The Lindblad equation is a master equation determining the time evolution of the density matrix: \[ \dot{\rho} = \mathcal{L}(\rho) =-i [\hat{H}, \rho] + \sum_{j,k} \Gamma_{j,k} \left( L_{j}\rho L_{k}^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_j, \rho \} \right) \] with the Hamiltonian of the system \(\hat{H}\), the rate matrix \(\Gamma_{j,k}\), and the Lindblad operator \(L_{j}\).
Each LindbladOpenSystem is therefore composed of a HamiltonianSystem: \[ -i [\hat{H}, \rho] \]
and a LindbladNoiseSystem: \[ \sum_{j,k} \Gamma_{j,k} \left( L_{j} \rho L_{k}^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_j, \rho\} \right) \]
The open systems in struqture are
QubitLindbladOpenSystem
BosonLindbladOpenSystem
FermionLindbladOpenSystem
MixedLindbladOpenSystem
For examples showing how to use QubitLindbladOpenSystem
s, please see the the spins section.
For examples showing how to use FermionLindbladOpenSystem
s, please see the the fermions section.
For examples showing how to use BosonLindbladOpenSystem
s, please see the the bosons section.
For examples showing how to use MixedLindbladOpenSystem
s, please see the the mixed system section.